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ABSTRACT: In de novo drug design, computational strategies are used to generate
novel molecules with good affinity to the desired biological target. In this work, we
show that recurrent neural networks can be trained as generative models for
molecular structures, similar to statistical language models in natural language
processing. We demonstrate that the properties of the generated molecules correlate
very well with the properties of the molecules used to train the model. In order to
enrich libraries with molecules active toward a given biological target, we propose to
fine-tune the model with small sets of molecules, which are known to be active
against that target. Against Staphylococcus aureus, the model reproduced 14% of 6051 hold-out test molecules that medicinal
chemists designed, whereas against Plasmodium falciparum (Malaria), it reproduced 28% of 1240 test molecules. When coupled
with a scoring function, our model can perform the complete de novo drug design cycle to generate large sets of novel molecules
for drug discovery.

■ INTRODUCTION

Chemistry is the language of nature. Chemists speak it fluently
and have made their discipline one of the true contributors to
human well-being, which has “change[d] the way you live and
die”.1 This is particularly true for medicinal chemistry.
However, creating novel drugs is an extraordinarily hard and
complex problem.2 One of the many challenges in drug design
is the sheer size of the search space for novel molecules. It has
been estimated that 1060 drug-like molecules could possibly be
synthetically accessible.3 Chemists have to select and examine
molecules from this large space to find molecules that are active
toward a biological target. Active means for example that a
molecule binds to a biomolecule, which causes an effect in the
living organism, or inhibits replication of bacteria. Modern
high-throughput screening techniques allow testing of mole-
cules on the order of 106 in the lab.4 However, larger
experiments will get prohibitively expensive. Given this practical
limitation of in vitro experiments, it is desirable to have
computational tools to narrow down the enormous search
space. Virtual screening is a commonly used strategy to search
for promising molecules among millions of existing or billions
of virtual molecules.5 Searching can be carried out using
similarity-based metrics, which provides a quantifiable numer-
ical indicator of closeness between molecules. In contrast, in de
novo drug design, one aims to directly create novel molecules
that are active toward the desired biological target.6,7 Here, like
in any molecular design task, the computer has to

(i) create molecules,

(ii) score and filter them, and
(iii) search for better molecules, building on the knowledge

gained in the previous steps.

Task i, the generation of novel molecules, is usually solved
with one of two different protocols.7 One strategy is to build
molecules from predefined groups of atoms or fragments.
Unfortunately, these approaches often lead to molecules that
are very hard to synthesize.8 Therefore, another established
approach is to conduct virtual chemical reactions based on
expert coded rules, with the hope that these reactions could
then also be applied in practice to make the molecules in the
laboratory.9 These systems give reasonable drug-like molecules
and are considered as “the solution” to the structure generation
problem.2 We generally share this view. However, we have
recently shown that the predicted reactions from these rule-
based expert systems can sometimes fail.10−12 Also, focusing on
a small set of robust reactions can unnecessarily restrict the
possibly accessible chemical space.
Task ii, scoring molecules and filtering out undesired

structures, can be solved with substructure filters for
undesirable reactive groups in conjunction with established
approaches such as docking13 or machine learning (ML)
approaches.7,14,15 The ML approaches are split into two
branches: Target prediction classifies molecules into active
and inactive, and quantitative structure−activity relationships
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(QSAR) seek to quantitatively predict a real-valued measure for
the effectiveness of a substance (as a regression problem). As
molecular descriptors, signature fingerprints, extended-con-
nectivity (ECFP), and atom pair (APFP) fingerprints and their
fuzzy variants are the de facto standard today.16−18 Convolu-
tional networks on graphs are a more recent addition to the
field of molecular descriptors.19−22 Jastrzebski et al. proposed to
use convolutional neural networks to learn descriptors directly
from SMILES strings.23 Random forests, support vector
machines, and neural networks are currently the most widely
used machine learning models for target prediction.24−35

This leads to task iii, the search for molecules with the right
binding affinity combined with optimal molecular properties. In
earlier work, this was performed (among others) with classical
global optimization techniques, for example genetic algorithms
or ant-colony optimization.7,36 Furthermore, de novo design is
related to inverse QSAR.37−40 While in de novo design a regular
QSAR mapping X → y from molecular descriptor space X to
properties y is used as the scoring function for the global
optimizer, in inverse QSAR one aims to find an explicit inverse
mapping y → X, and then maps back from optimal points in
descriptor space X to valid molecules. However, this is not well-
defined, because molecules are inherently discrete (the space is
not continuously populated), and the mapping from a target
property value y to possible structures X is one-to-many, as
usually several different structures with very similar properties
can be found. Several protocols have been developed to address
this, for example enumerating all structures within the
constraints of hyper-rectangles in the descriptor space.37−42

Go ́mez-Bombarelli et al. proposed to learn continuous
representations of molecules with variational autoencoders,
based on the model by Bowman et al.,43 and to perform
Bayesian optimization in this vector space to optimize
molecular properties.44 While promising, this approach was
not applied to create active drug molecules and often produced
syntactically invalid molecules and highly strained or reactive
structures, for example cyclobutadienes.44

In this work, we suggest a complementary, completely data-
driven de novo drug design approach. It relies only on a
generative model for molecular structures, based on a recurrent
neural network, that is trained on large sets of molecules.
Generative models learn a probability distribution over the
training examples; sampling from this distribution generates
new examples similar to the training data. Intuitively, a

generative model for molecules trained on drug molecules
would “know” how valid and reasonable drug-like molecules
look and could be used to generate more drug-like molecules.
However, for molecules, these models have been studied rarely,
and rigorously only with traditional models such as Gaussian
mixture models (GMM).41,45,46 Recently, recurrent neural
networks (RNNs) have emerged as powerful generative models
in very different domains, such as natural language processing,47

speech,48 images,49 video,50 formal languages,51 computer code
generation,52 and music scores.53 In this work, we highlight the
analogy of language and chemistry, and show that RNNs can
also generate reasonable molecules. Furthermore, we demon-
strate that RNNs can also transfer their learned knowledge
from large molecule sets to directly produce novel molecules
that are biologically active by retraining the models on small
sets of already known actives. We test our models by
reproducing hold-out test sets of known biologically active
molecules.

■ METHODS
Representing Molecules. To connect chemistry with

language, it is important to understand how molecules are
represented. Usually, they are modeled by molecular graphs,
also called Lewis structures in chemistry. In molecular graphs,
atoms are labeled nodes. The edges are the bonds between
atoms, which are labeled with the bond order (e.g., single,
double, or triple). One could therefore envision having a model
that reads and outputs graphs. Several common chemistry
formats store molecules in such a manner. However, in models
for natural language processing, the input and output of the
model are usually sequences of single letters, strings or words.
We therefore employ the SMILES format, which encodes
molecular graphs compactly as human-readable strings.
SMILES is a formal grammar which describes molecules with
an alphabet of characters, for example c and C for aromatic and
aliphatic carbon atoms, O for oxygen, and −, =, and # for single,
double, and triple bonds (see Figure 1).54 To indicate rings, a
number is introduced at the two atoms where the ring is closed.
For example, benzene in aromatic SMILES notation would be
c1ccccc1. Side chains are denoted by round brackets. To
generate valid SMILES, the generative model would have to
learn the SMILES grammar, which includes keeping track of
rings and brackets to eventually close them. In morphine, a
complex natural product, the number of steps between the first

Figure 1. Examples of molecules and their SMILES representation. To correctly create smiles, the model has to learn long-term dependencies, for
example, to close rings (indicated by numbers) and brackets.
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1 and the second 1, indicating a ring, is 32. Having established a
link between molecules and (formal) language, we can now
discuss language models.
Language Models and Recurrent Neural Networks.

Given a sequence of words (w1, ..., wi), language models predict
the distribution of the (i+1)th word wi+1.

55 For example, if a
language model received the sequence “Chemistry is”, it would
assign different probabilities to possible next words: “fascinat-
ing”, “important”, or “challenging” would receive high
probabilities, while “runs” or “potato” would receive very low
probabilities. Language models can both capture the
grammatical correctness (“runs” in this sentence is wrong)
and the meaning (“potato” does not make sense). Language
models are implemented, for example, in message autocorrec-
tion in many modern smartphones. Interestingly, language
models do not have to use words. They can also be based on
characters or letters.55 In that case, when receiving the sequence
of characters chemistr, it would assign a high probability to y,
but a low probability to q. To model molecules instead of
language, we simply swap words or letters with atoms, or, more
practically, characters in the SMILES alphabet, which form a
(formal) language. For example, if the model receives the
sequence c1ccccc, there is a high probability that the next
symbol would be a “1”, which closes the ring, and yields
benzene.
More formally, to a sequence S of symbols si at steps ti ∈ T,

the language model assigns a probability of

∏= · |θ θ θ
=

−P S P s P s s s( ) ( ) ( , ..., )
t

T

t t1
2

1 1
(1)

where the parameters θ are learned from the training set.55 In
this work, we use a recurrent neural network (RNN) to
estimate the probabilities of eq 1. In contrast to regular

feedforward neural networks, RNNs maintain state, which is
needed to keep track of the symbols seen earlier in the
sequence. In abstract terms, an RNN takes a sequence of input
vectors x1:n = (x1, ..., xn) and an initial state vector h0, and
returns a sequence of state vectors h1:n = (h1, ..., hn) and a
sequence of output vectors y1:n = (y1, ..., yn). The RNN consists
of a recursively defined function R, which takes a state vector hi
and input vector xi+1 and returns a new state vector hi+1.
Another function O maps a state vector hi to an output vector
yi.

55

=h x h yRNN( , ) ,n n n0 1: 1: 1: (2)

= −Rh h x( , )i i i1 (3)

= Oy h( )i i (4)

The state vector hi stores a representation of the information
about all symbols seen in the sequence so far. As an alternative
to the recursive definition, the recurrent network can also be
unrolled for finite sequences (see Figure 2). An unrolled RNN
can be seen as a very deep neural network, in which the
parameters θ are shared among the layers, and the hidden state
ht is passed as an additional input to the next layer. Training the
unrolled RNN to fit the parameters θ can then simply be done
by using backpropagation to compute the gradients with
respect to the loss function, which is categorical cross-entropy
in this work.55

As the specific RNN function, in this work, we use the long
short-term memory (LSTM), which was introduced by
Hochreiter and Schmidhuber.56 It has been used successfully
in many natural language processing tasks,47 for example in
Google’s neural machine translation system.57 For excellent in-
depth discussions of the LSTM, we refer to the articles by
Goldberg,55 Graves,58 Olah,59 and Greff et al.60

Figure 2. (a) Recursively defined RNN. (b) The same RNN, unrolled. The parameters θ (the weight matrices of the neural network) are shared over
all time steps.

Figure 3. Symbol generation and sampling process. We start with a random seed symbol s1, here c, which gets converted into a one-hot vector x1 and
input into the model. The model then updates its internal state h0 to h1 and outputs y1, which is the probability distribution over the next symbols.
Here, sampling yields s2 = 1. Converting s2 to x2 and feeding it to the model leads to updated hidden state h2 and output y2, from which we can
sample again. This iterative symbol-by-symbol procedure can be continued as long as desired. In this example, we stop it after observing an EOL
(\n) symbol, and obtain the SMILES for benzene. The hidden state hi allows the model to keep track of opened brackets and rings, to ensure that
they will be closed again later.
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To encode the SMILES symbols as input vectors xt, we
employ the “one-hot” representation.58 This means that if there
are K symbols, and k is the symbol to be input at step t, then we
can construct an input vector xt with length K, whose entries
are all zero except the kth entry, which is one. If we assume a
very restricted set of symbols {c, 1, \n}, input c would
correspond to xt = (1, 0, 0), 1 to xt = (0, 1, 0), and \n to xt = (0,
0, 1).
The probability distribution Pθ(st+1|st, ..., s1) of the next

symbol given the already seen sequence is thus a multinomial
distribution, which is estimated using the output vector yt of the
recurrent neural network at time step t by

= | =
∑θ +

′=
′P s k s s

y

y
( , ..., )

exp( )

exp( )
t t

t
k

k
K

t
k1 1

1 (5)

where yt
k corresponds to the kth element of vector yt.

58

Sampling from this distribution would then allow generating
novel molecules: After sampling a SMILES symbol st+1 for the
next time step t + 1, we can construct a new input vector xt+1,
which is fed into the model, and via yt+1 and eq 5 yields Pθ(st+2|
st+1, ..., s1). Sampling from the latter generates st+2, which serves
again also as the model’s input for the next step (see Figure 3).
This symbol-by-symbol sampling procedure is repeated until
the desired number of characters have been generated.58

To indicate that a molecule is “completed”, each molecule in
our training data finishes with an “end of line” (EOL) symbol,
in our case the single character \n (which means that the
training data is just a simple SMILES file). Thus, when the
system outputs an EOL, a generated molecule is finished.
However, we simply continue sampling, thus generating a
regular SMILES file that contains one molecule per line.
In this work, we used a network with three stacked LSTM

layers, using the Keras library.61 The model was trained with
back-propagation through time,58 using the ADAM optimizer at
standard settings.62 To mitigate the problem of exploding
gradients during training, a gradient norm clipping of 5 is
applied.58

Transfer Learning. For many machine learning tasks, only
small data sets are available, which might lead to overfitting
with powerful models such as neural networks. In this situation,
transfer learning can help.63 Here, a model is first trained on a
large data set for a different task. Then, the model is retrained
on the smaller data set, which is also called f ine-tuning. The aim
of transfer learning is to learn general features on the bigger
data set, which also might be useful for the second task in the
smaller data regime. To generate focused molecule libraries, we
first train on a large, general set of molecules, then perform
fine-tuning on a smaller set of specific molecules, and after that
start the sampling procedure.
Target Prediction. To verify whether the generated

molecules are active on the desired targets, standard target
prediction was employed. Machine learning based target
prediction aims to learn a classifier c: M → {1, 0} to decide
whether a molecule m ∈ molecular descriptor space M is active
or not against a target.14,15 The molecules are split into actives
and inactives using a threshold on a measure for the substance
effectiveness. pIC50 = −log10(IC50) is one of the most widely
used metrics for this purpose. IC50 is the half maximal inhibitory
concentration, that is, the concentration of drug that is required
to inhibit 50% of a biological target’s function in vitro.
To predict whether the generated molecules are active

toward the biological target of interest, target prediction models

(TPMs) were trained for all the tested targets (5-HT2A,
Plasmodium falciparum and Staphylococcus aureus). We
evaluated random forest, logistic regression, (deep) neural
networks, and gradient boosting trees (GBT) as models with
ECFP4 (extended connectivity fingerprint with a diameter of 4)
as the molecular descriptor.16,17 We found that GBTs slightly
outperformed all other models and used these as our virtual
assay in all studies (AUC[5-HT2A] = 0.877, AUC[Staph. aur.] =
0.916). ECFP4 fingerprints were generated with CDK version
1.5.13.64,65 scikit-learn,66 XGBoost,67 and Keras61 were used as
the machine learning libraries. For 5-HT2A and Plasmodium,
molecules are considered as active for the TPM if their IC50
reported in ChEMBL is <100 nM, which translates to a pIC50 >
7, whereas for Staphylococcus, we used pMIC > 3.

Data. The chemical language model was trained on a
SMILES file containing 1.4 million molecules from the
ChEMBL database, which contains molecules and measured
biological activity data. The SMILES strings of the molecules
were canonicalized (which means finding a unique representa-
tion that is the same for isomorphic molecular graphs)68,69

before training with the CDK chemoinformatics library,
yielding a SMILES file that contained one molecule per
line.64,65 It has to be noted that ChEMBL contains many
peptides, natural products with complex scaffolds, Michael
acceptors, benzoquinones, hydroxylamines, hydrazines, etc.,
which is reflected in the generated structures (see below). This
corresponds to 72 million individual characters, with a
vocabulary size of 51 unique characters. 51 characters is only
a subset of all SMILES symbols, since the molecules in
ChEMBL do not contain many of the heavy elements. As we
have to set the number of symbols as a hyperparameter during
model construction, and the model can only learn the
distribution over the symbols present in the training data,
this implies that only molecules with these 51 SMILES symbols
seen during training can be generated during sampling.
The 5-HT2A, the Plasmodium falciparum, and the Staph-

ylococcus aureus data sets were also obtained from ChEMBL. As
these molecules were intended to be used in the rediscovery
studies, they were removed from the training data before fitting
the chemical language model.

Model Evaluation. To evaluate the models for a test set T,
and a set of molecules GN generated from the model by

sampling, we report the ratio of reproduced molecules | ∩ |
| |

G T
T

N ,

and enrichment over random (EOR), which is defined as

= | |

| |

EOR

n
G
m

R

N

M (6)

where n = |GN ∩ T| is the number of reproduced molecules
from T by sampling a set GN of |GN| = N molecules from the
fine-tuned generative model, and m = |RM ∩ T| is the number of
reproduced molecules from T by sampling a set RM of |RM| = M
molecules from the generic, unbiased generative model trained
only on the large data set. Intuitively, EOR indicates how much
better the fine-tuned models work when compared to the
general model.

■ RESULTS AND DISCUSSION
In this work, we address two points: First, we want to generate
large sets of diverse molecules for virtual screening campaigns.
Second, we want to generate smaller, focused libraries enriched
with possibly active molecules for a specific target. For the first
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task, we can train a model on a large, general set of molecules
to learn the SMILES grammar. Sampling from this model
would generate sets of diverse, but unfocused molecules. To
address the second task, and to obtain novel active drug
molecules for a target of interest, we perform transfer learning:
We select a small set of known actives for that target and we
refit our pretrained chemical language model with this small
data set. After each epoch, we sample from the model to
generate novel actives. Furthermore, we investigate if the model
actually benefits from transfer learning, by comparing it to a
model trained from scratch on the small sets without
pretraining.
Training the Recurrent Network. We employed a

recurrent neural network with three stacked LSTM layers,
each with 1024 dimensions, and each one followed by a
dropout70 layer, with a dropout ratio of 0.2, to regularize the
neural network. The model was trained until convergence,
using a batch size of 128. The RNN was unrolled for 64 steps.
It had 21.3 × 106 parameters.
During training, we sampled a few molecules from the model

every 1000 minibatches to inspect progress. Within a few 1000
steps, the model starts to output valid molecules (see Table 1).

Generating Novel Molecules. To generate novel
molecules, 50,000,000 SMILES symbols were sampled from
the model symbol-by-symbol. This corresponded to 976,327
lines, from which 97.7% were valid molecules after parsing with
the CDK toolkit. Removing all molecules already seen during
training yielded 864,880 structures. After filtering out
duplicates, we obtained 847,955 novel molecules. A few
generated molecules were randomly selected and depicted in
Figure 4. The Supporting Information contains more
structures. The created structures are not just formally valid
but also mostly chemically reasonable.
In order to check if the de novo compounds could be

considered as valid starting points for a drug discovery program,
we applied the internal AstraZeneca filters.71 At AstraZeneca,
this flagging system is used to determine if a compound is
suitable to be part of the high-throughput screening collection

(if flagged as “core” or “backup”) or should be restricted for
particular use (flagged as “undesirable” since it contains one or
several unwanted substructures, e.g., undesired reactive func-
tional groups). The filters were applied to the generated set of
848 k molecules, and they flagged most of them, 640 k (75%),
as either core or backup. Since the same ratio (75%) of core
and backup compounds has been observed for the ChEMBL
collection, we therefore conclude that the algorithm generates
preponderantly valid screening molecules and faithfully
reproduces the distribution of the training data.
To determine whether the properties of the generated

molecules match the properties of the training data from
ChEMBL, we followed the procedure of Kolb:72 We computed
several molecular properties, namely, molecular weight,
BertzCT, the number of H-donors, H-acceptors, and rotatable
bonds, logP, and total polar surface area for randomly selected
subsets from both sets with the RDKit73 library version
2016.03.1. Then, we performed dimensionality reduction to 2D
with t-SNE (t-distributed stochastic neighbor embedding, a
technique analogous to PCA), which is shown in Figure 5.74

Both sets overlap almost completely, which indicates that the
generated molecules very well recreate the properties of the
training molecules.
Furthermore, we analyzed the Bemis−Murcko scaffolds of

the training molecules and the sampled molecules.75 Bemis−
Murcko scaffolds contain the ring systems of a molecule and
the moieties that link these ring systems, while removing any
side chains. They represent the scaffold, or “core” of a molecule,
which series of drug molecules often have in common. The
number of common scaffolds in both sets divided by the union
of all scaffolds in both sets (Jaccard index) is 0.12, which
indicates that the language model does not just modify side
chain substituents but also introduces modifications at the
molecular core.

Generating Active Drug Molecules and Focused
Libraries. Targeting the 5-HT2A Receptor. To generate
novel ligands for the 5-HT2A receptor, we first selected all
molecules with pIC50 > 7 which were tested on 5-HT2A from
ChEMBL (732 molecules), and then fine-tuned our pretrained
chemical language model on this set. After each epoch, we
sampled 100,000 chars, canonicalized the molecules, and
removed any sampled molecules that were already contained
in the training set. Following this, we evaluated the generated
molecules of each round of retraining with our 5-HT2A target
prediction model (TPM). In Figure 6, the ratio of molecules
predicted to be active by the TPM after each round of fine-
tuning is shown. Before fine-tuning (corresponding to epoch

Table 1. Molecules Sampled during Training

Figure 4. A few randomly selected, generated molecules. Ad = Adamantyl.
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0), the model generates almost exclusively inactive molecules.
Already after 4 epochs of fine-tuning the model produced a set
in which 50% of the molecules are predicted to be active.
Diversity Analysis. In order to assess the novelty of the de

novo molecules generated with the fine-tuned model, a nearest
neighbor similarity/diversity analysis has been conducted using
a commonly used 2D fingerprint (ECFP4) based similarity
method (Tanimoto index).72 Figure 7 shows the distribution of

the nearest neighbor Tanimoto index generated by comparing
all the novel molecules and the training molecules before and
after n epochs of fine-tuning. For each bin, the white bars
indicate the molecules generated from the unbiased, general
model, while the darker bars indicate the molecules after several
epochs of fine-tuning. Within the bins corresponding to lower
similarity, the number of molecules decreases, while the bins of
higher similarity get populated with increasing numbers of

Figure 5. t-SNE projection of 7 physicochemical descriptors of random molecules from ChEMBL (blue) and molecules generated with the neural
network trained on ChEMBL (green), to two unitless dimensions. The distributions of both sets overlap significantly.

Figure 6. Epochs of fine-tuning vs ratio of actives.

ACS Central Science Research Article

DOI: 10.1021/acscentsci.7b00512
ACS Cent. Sci. 2018, 4, 120−131

125

http://dx.doi.org/10.1021/acscentsci.7b00512


molecules. The plot thus shows that the model starts to output
more and more similar molecules to the target-specific training
set. Notably, after a few rounds of training not only are highly
similar molecules produced but also molecules covering the
whole range of similarity, indicating that our method could
deliver not only close analogues but also new chemotypes or
scaffold ideas to a drug discovery project.5 To have the best of
both worlds, that is, diverse and focused molecules, we
therefore suggest to sample after each epoch of retraining
and not just after the final epoch.
Targeting Plasmodium falciparum (Malaria). Plasmodium

falciparum is a parasite that causes the most dangerous form of
malaria.76 To probe our model on this important target, we
used a more challenging validation strategy. We wanted to
investigate whether the model could also propose the same
molecules that medicinal chemists chose to evaluate in
published studies. To test this, first, the known actives against
Plasmodium falciparum with a pIC50 > 8 were selected from
ChEMBL (Table 2). Then, this set was split randomly into a

training (1239 molecules) and a test set (1240 molecules). The
chemical language model was then fine-tuned on the training
set. 7500 molecules were sampled after each of the 20 epochs of
refitting.
This yielded 128,256 unique molecules. Interestingly, we

found that our model was able to “redesign” 28% of the unseen
molecules of the test set. In comparison to molecules sampled

from the unspecific, untuned model, an enrichment over
random (EOR) of 66.9 is obtained. With a smaller training set
of 100 molecules, the model can still reproduce 7% of the test
set, with an EOR of 19.0. To test the reliance on pIC50 we
chose to use another cutoff of pIC50 > 9, and took 100
molecules in the training set and 1022 in the test set. 11% of
the test set could be recreated, with an EOR of 35.7. To visually
explore how the model populates chemical space, Figure 8
shows a t-SNE plot of the ECFP4 fingerprints of the test
molecules and 2000 generated molecules that were predicted to
be active by the target prediction model for Plasmodium
falciparum. It indicates that the model has generated many
similar molecules around the test examples.

Targeting Staphylococcus aureus (Golden Staph). To
evaluate a different target, we furthermore conducted a series of
experiments to reproduce known active molecules against
Staphylococcus aureus. Here, we used actives with a pMIC > 3.
MIC is the mean inhibitory concentration, the lowest
concentration of a compound that prevents visible growth of
a microorganism. As above, the actives were split into a training
and a test set. However, here, the availability of the data allows
larger test sets to be used. After fine-tuning on the training set
of 1000 molecules (Table 3, entry 1), our model could retrieve
14% of the 6051 test molecules. When scaling down to a
smaller training set of 50 molecules (the model gets trained on
less than 1% of the data!), it can still reproduce 2.5% of the test
set, and performs 21.6 times better than the unbiased model
(Table 3, entry 2). Using a lower learning rate (0.0001, entry 3)
for fine-tuning, which is often done in transfer learning, does
not work as well as the standard learning rate (0.001, entry 2).
We additionally examined whether the model benefits from
transfer learning. When trained from scratch, the model
performs much worse than the pretrained and subsequently
fine-tuned model (see Figure 9 and Table 3, entry 4).
Pretraining on the large data set is thus crucial to achieve
good performance against Staphylococcus aureus.

Figure 7. Nearest-neighbor Tanimoto similarity distribution of the generated molecules for 5-HT2A after n epochs of fine-tuning against the known
actives. The generated molecules are distributed over the whole similarity range. Generated molecules with a medium similarity can be interesting for
scaffold-hopping.5

Table 2. Reproducing Known Actives in the Plasmodium
Test Set

no. pIC50 training test gen mols reprod (%) EORa

1 >8 1239 1240 128,256 28 66.9
2 >8 100 1240 93,721 7 19.0
3 >9 100 1022 91,034 11 35.7

aEOR: Enrichment over random.
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Simulating Design-Synthesis-Test Cycles. The experi-
ments we conducted so far are applicable if one already knows
several actives. However, in drug discovery, one often does not
have such a set to start with. Therefore, high throughput
screenings are conducted to identify a few hits, which serve as a
starting point for the typical cyclical drug discovery process:
Molecules get designed, synthesized, and then tested in assays.
Then, the best molecules are selected, and based on the gained
knowledge new molecules are designed, which closes the cycle.
Therefore, as a final challenge for our model, we simulated this
cycle by iterating molecule generation (“synthesis”), selection
of the best molecules with the machine learning based target
prediction (“virtual assay”), and retraining the language model
with the best molecules (“design”) with Staphylococcus aureus as
the target. We thus do not use a set of known actives to start
the structure generation procedure (see Figure 10).
We started with 100,000 sampled molecules from the

unbiased chemical language model. Then, using our target
prediction model, we extracted the molecules classified as
actives. After that, the RNN was fine-tuned for 5 epochs on the
actives, sampling ≈10,000 molecules after each epoch. The
resulting molecules were filtered with the target prediction

model, and the new actives appended to the actives from the
previous round, closing the loop.
Already after 8 iterations, the model reproduced 416 of the

7001 test molecules from the previous task, which is 6% (Table
3, entry 5), and exhibits an EOR of 59.6. This EOR is higher
than if the model is retrained directly on a set of 50 actives
(entry 2). Additionally, we obtained 60,988 unique molecules
that the target prediction model classified as active. This
suggests that, in combination with a target prediction or scoring
model, our model can at least simulate the complete de novo
design cycle.

Why Does the Model Work? Our results indicate that the
general model trained on a large molecule set has learned the
SMILES rules and can output valid, drug-like molecules, which
resemble the training data. However, sampling from this model
does not help much if we want to generate actives for a specific
target: We would have to generate very large sets to find actives
for that target among the diverse range of molecules the model
creates, which is indicated by the high EOR scores in our
experiments.
When fine-tuned to a set of actives, the probability

distribution over the molecules captured by our model is
shifted toward molecules active toward our target. To study
this, we compare the Levenshtein (string edit) distance of the
generated SMILES to their nearest neighbors in the training set
in Figure 11. The Levenshtein distance of, e.g., benzene
c1ccccc1 and pyridine c1ccncc1 would be 1. Figure 11 shows
that while the model often seems to have made small
replacements in the underlying SMILES, in many cases it
also made more complex modifications or even generated
completely different SMILES. This is supported also by the
distribution of the nearest neighbor fingerprint similarities of
training and rediscovered molecules (ECFP4, Tanimoto, Figure
12). Many rediscovered molecules are in the medium similarity
regime.

Figure 8. t-SNE plot of the pIC50 > 9 test set (blue) and the de novo molecules predicted to be active (green). The language model populates
chemical space around the test molecules.

Table 3. Reproducing Known Actives in the Staphylococcus
Test Set

entry pMIC training test gen mols reprod (%) EORa

1 >3 1000 6051 51,052 14 155.9
2 >3 50 7001 70,891 2.5 21.6
3b >3 50 7001 85,755 1.8 6.3
4c >3 50 7001 285 0
5d >3 0 7001 60,988 6 59.6

aEOR: Enrichment over random. bFine-tuning learning rate = 10−4.
cNo pretraining. d8 generate-test cycles.
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Because we perform transfer learning, during fine-tuning, the
model does not “forget” what it has learned. A plausible
explanation why the model works is therefore that it can
transfer the modifications that are regularly applied when series
of molecules are studied, to the molecules it has seen during
fine-tuning.

■ CONCLUSION

In this work, we have shown that recurrent neural networks
based on the long short-term memory (LSTM) can be applied
to learn a statistical chemical language model. The model can
generate large sets of novel molecules with similar phys-
icochemical properties to the training molecules. This can be
used to generate libraries for virtual screening. Furthermore, we
demonstrated that the model performs transfer learning when
fine-tuned to smaller sets of molecules active toward a specific
biological target, which enables the creation of novel molecules
with the desired activity. By iterating cycles of structure
generation with the language model, scoring with a target
prediction model (TPM) and retraining of the model with
increasingly larger sets of highly scored molecules, we showed

that we do not even need a set of known active molecules to
start our procedure with, as the TPM could also be a docking
program, or a robot conducting synthesis77 and biological
testing.
We see three main advantages of our method. First, it is

conceptually orthogonal to established molecule generation
approaches, as it learns a generative model for molecular
structures. Second, our method is very simple to set up, to train,
and to use; it can be adapted to different data sets without any
modifications to the model architecture; and it does not depend
on hand-encoded expert knowledge. Furthermore, it merges
structure generation and optimization in one model. A
weakness of our model is interpretability. In contrast, existing
de novo design methods settled on virtual reactions to generate
molecules, which has advantages as it minimizes the chance of
obtaining “overfit”, weird molecules, and increases the chances
to find synthesizable compounds.2,7

To extend our work, it is just a small step to cast molecule
generation as a reinforcement learning problem, where the
pretrained LSTM generator could be seen as a policy, which
can be encouraged to create better molecules with a reward

Figure 9. Different training strategies on the Staphylococcus aureus data set with 1000 training and 6051 test examples. Fine-tuning the pretrained
model performs better than training from scratch (lower test loss [cross entropy] is better).

Figure 10. Scheme of our de novo design cycle. Molecules are generated by the chemical language model and then scored with the target prediction
model (TPM). The inactives are filtered out, and the RNN is retrained. Here, the TPM is a machine learning model, but it could also be a robot
conducting synthesis and biological assays, or a docking program.
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signal obtained from a target prediction model.78 In addition,
different approaches for target prediction, for example, docking,
could be evaluated.7,13

Deep learning is not a panacea, and we join Gawehn et al. in
expressing “some healthy skepticism” regarding its application
in drug discovery.31 Generating molecules that are almost right
is not enough, because in chemistry, a miss is as good as a mile,
and drug discovery is a “needle in the haystack” problemin
which also the needle looks like hay. Nevertheless, given that
we have shown in this work that our model can rediscover
those needles, and other recent developments,31,79 we believe
that deep neural networks can be complementary to established
approaches in drug discovery. The complexity of the problem
certainly warrants the investigation of novel approaches.
Eventually, success in the wet lab will determine if the new
wave26 of neural networks will prevail.
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Aguilera-Iparraguirre, J.; Hirzel, T. D.; Adams, R. P.; Aspuru-Guzik, A.
Automatic chemical design using a data-driven continuous representa-
tion of molecules. ArXiv 2016, 1610.02415.
(45) Voss, C. Modeling Molecules with Recurrent Neural Networks;
2015; http://csvoss.github.io/projects/2015/10/08/rnns-and-
chemistry.html.
(46) Firth, N. de novo Design Without the Chemistry; 2016;
https://medium.com/@nf508/de-novo-design-without-the-chemistry-
d183e8a9f150.
(47) Jozefowicz, R.; Vinyals, O.; Schuster, M.; Shazeer, N.; Wu, Y.
Exploring the limits of language modeling. ArXiv 2016, 1602.02410.
(48) Graves, A.; Eck, D.; Beringer, N.; Schmidhuber, J. Biologically
plausible speech recognition with LSTM neural nets. In International
Workshop on Biologically Inspired Approaches to Advanced Information
Technology; 2004; pp 127−136.
(49) van den Oord, A.; Kalchbrenner, N.; Kavukcuoglu, K. Pixel
Recurrent Neural Networks. In International Conference on Machine
Learning; 2016.
(50) Srivastava, N.; Mansimov, E.; Salakhutdinov, R. Unsupervised
learning of video representations using LSTMs. In Proceedings of the
32nd International Conference on Machine Learning; 2015; pp 843−852.
(51) Gers, F. A.; Schmidhuber, E. LSTM recurrent networks learn
simple context-free and context-sensitive languages. IEEE Transactions
on Neural Networks 2001, 12, 1333−1340.

ACS Central Science Research Article

DOI: 10.1021/acscentsci.7b00512
ACS Cent. Sci. 2018, 4, 120−131

130

http://csvoss.github.io/projects/2015/10/08/rnns-and-chemistry.html
http://csvoss.github.io/projects/2015/10/08/rnns-and-chemistry.html
https://medium.com/@nf508/de-novo-design-without-the-chemistry-d183e8a9f150
https://medium.com/@nf508/de-novo-design-without-the-chemistry-d183e8a9f150
http://dx.doi.org/10.1021/acscentsci.7b00512


(52) Bhoopchand, A.; Rocktas̈chel, T.; Barr, E.; Riedel, S. Learning
Python Code Suggestion with a Sparse Pointer Network. ArXiv 2016,
1611.08307.
(53) Eck, D.; Schmidhuber, J. Finding temporal structure in music:
Blues improvisation with LSTM recurrent networks. In Proc. 12th
IEEE Workshop Neural Networks for Signal Processing; 2002; pp 747−
756.
(54) Weininger, D. SMILES, a chemical language and information
system. 1. Introduction to methodology and encoding rules. J. Chem.
Inf. Model. 1988, 28, 31−36.
(55) Goldberg, Y. A Primer on Neural Network Models for Natural
Language Processing. J. Artif. Intell. Res. 2016, 57, 345−420.
(56) Hochreiter, S.; Schmidhuber, J. Long short-term memory.
Neural computation 1997, 9, 1735−1780.
(57) Johnson, M.; Schuster, M.; Le, Q. V.; Krikun, M.; Wu, Y.; Chen,
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